
Engraver: GPU and CPU Parallel Implementation of Edge
Detector

Kaige Liu, Karen He

Summary

We implemented from scratch two parallel
versions of the Canny edge detector, a CUDA
version on GPU and an OpenMP version
on CPU, and compared the performance of
the two implementations. We optimized our
implementation to achieve a 8 times speedup
with our GPU implementation and a 6 times
speedup with our CPU implementation using
8 cores.

Keywords : Canny edge detection, image
segmentation, CUDA, OpenMP.

Project URL: https://dukaige.github.io/kaigel

rhe1 418project/

1 Background

Edge detection is an image processing tech-
nique for finding the boundaries of objects
within images. It works by identifying
points in a digital image at which the image
brightness changes sharply or, more formally,
has discontinuities. Edge detection has a
wide variety of application, including image
segmentation and data extraction, in many
areas such as image processing, computer
vision, and machine vision.

In our project, we implemented an edge
detector based on the Canny edge detector.
We also explored the application of edge

Figure 1: Edge Detection Operations [?]

detection by implementing an image segmen-
tation algorithm that allows us to achieve

1



image cutout.

Our program is divided into two parts, the
edge detector, and the image segmentor.
The input of the edge detector is an image,
and the output is the edge extraction im-
age of the input image. We represent the
image as a vector of float throughout the
process. For the image vector, we present
a series of operations as illustrated in Figure 1.

1.1 Greyscale and Blur

We first convert the image into greyscale to
simplify the problem. Since our objective is
to extract the edges, the presence of multiple
channels is a distracting factor. Then we
perform a Gaussian blur on the image. The
blur removes some of the noise before further
processing the image.

1.2 Extract Gradient

The third step is to extract the gradients
of the image, in order to detect the edges.
An edge occurs when the color of an image
changes, hence the intensity of the pixel
changes as well. We calculate the magnitude
and angle of the directional gradients, which
can be determined by using a Sobel filter.

1.3 Non-Maximum Suppression

The next step is non-maximum suppression,
i.e. edge thinning. The image magnitude
produced results in thick edges. Ideally, the
final image should have thin edges. Thus,
we perform non-maximum suppression to
thin out the edges. Non-maximum suppres-
sion works by finding the pixel with the
maximum value in an edge. As illustrated
in Figure 2, it occurs when pixel q has an
intensity that is larger than both p and r
where pixels p and r are the pixels in the
gradient direction of q. If this condition

is true, then we keep the pixel, otherwise,
we set the pixel to zero (make it a black pixel).

Figure 2: Non-Maximum Suppression

1.4 Double Thresholding

The fifth step is double thresholding. We
notice that the result from non-maximum
suppression is not perfect, since some edges
may not actually be edges due to some noise
in the image. Double thresholding takes care
of this. It sets two thresholds, a high and
a low threshold. Pixels with a high value
are most likely to be edges. We normalized
all the values such that they will only range
from 0 to 1. All pixels with a value larger
than the high threshold will be classified as a
strong edge. All pixels with a value smaller
than the high threshold will be set to 0. The
values between the low threshold and the
high threshold would be classified as weak
edges, which we do not know whether they
are actual edges or not edges at all. The two
thresholds are different per image, based on
the characteristics of the image. We found
it helpful to choose a threshold ratio instead
of a specific value and scale it by multiplying

2



the maximum pixel value in the image. As for
the low threshold, we chose a low threshold
ratio and multiplied it by the high threshold
value.

1.5 Edge Tracking

The last step is edge tracking. Now that we
have determined what the strong edges and
weak edges are, we need to figure out which
weak edges are actual edges. To do this,
we perform edge tracking by doing a graph
search. Weak edges that are connected to
strong edges (including those strong edges
that are formed by other weak edges) will
be classified as real edges. Weak edges that
are not connected to strong edges will be
removed. In our sequential version, we imple-
ment this expansion process using depth-first
search.

1.6 Parallelism

The computationally expensive part of the
edge detection lies in the fact that, in each
step, we have to do work on every single pixel
of the image. When the image gets large,
each step can take a huge amount of time.
Therefore, the edge detection significantly
benefits from parallelism, especially for large
input images.

Every step is dependent on the result of the
previous step, so we have to insert barriers
between every two steps. For steps 1-5, the
internal dependency within the step is low,
since the work of each pixel is not dependent
on other pixels. Therefore we fully parallelled
the work on each pixel. For step 6, as we are
constantly expanding from the strong edges
to infect there neighboring weak edges, the
work done on each pixel is dependent on its
neighbors, neighbors of neighbors, and so on.
Therefore we cannot take a data-parallel ap-
proach. However, we can still take advantage

of spatial and temporal locality given we are
expanding from strong edges to its neighbors,
and neighbors of neighbors, and so on.

2 Approach
After implementing a sequential edge detec-
tor, we implemented two parallel versions of
the edge detector — a GPU version using
CUDA, and a CPU version using OpenMP.
To obtain a good performance on the CUDA
version, we used the GHC machines that
contain NVIDIA GeForce GTX 1080 GPUs,
which support CUDA compute capability 6.1.
We chose to use one of the GHC machines
since it has a very powerful graphics card,
and it also provides a reasonable processor
for comparison. We believe a GHC machine
reflects the computational abilities of many
modern machines.

2.1 CUDA Implementation on
GPU

2.1.1 Our Parallelization Techniques

For steps 1-5, where the work is independent,
we directly map the pixels to threads. For
step 6 (edge tracking), we present a simula-
tion of the depth-first search. This is the only
place that we change the original sequential
version to compromise accuracy for speedup.
We first divide the image into a number of
blocks. We make the number of blocks large
(the number of GPU CUDA threads × 10),
and leave the assignment of CUDA wraps to
blocks in CUDA scheduler.

After dividing the image, we perform a
number of iterations to approximate the
result of the actual depth-first search. In
each iteration, we perform depth-first search
within each block and exchange the values of
the pixels at the border with their neighbors
across the block. An illustration is shown in

3



Figure 3, where the pixels whose value need
to be exchanged are marked blue.

After experimenting with different image and
different input size, we discovered that for
most images, the result after two to three
iterations would closely approximate the
actual depth-first search result. In fact, after
only one iteration, the result is roughly the
same as the actual depth-first search result.

Figure 3: Easy Input Image

This is within our expectation, given the
nature of the task. In the edge tracking step,
we want to set the weak edges closed to strong
edges to be strong edges. Among the pixels
that are not set to zero after non-maximum
suppression, the majority is strong edges.
The remaining small portion of weak edges
typically consists of two parts: the unclear
boundaries, which are usually close to the
strong edges, and noises, which are often
far apart from the actual (strong) edges.
Therefore, we dont need many iterations
to approximate the actual DFS result. We
ended up performing two iterations of DFS,
given that DFS is the most computationally
expensive part of the algorithm, and that the

accuracy wont be compromised much.

2.1.2 Other Attempts

Before arriving at this DFS approximation
algorithm, we had some failed attempts. We
initially planned to use the red-black coloring
discussed in class to divide the pixels into
two groups and alternate updating the two
groups. A problem with this approach is
that we have to synchronize between every
two updates, while each update is relatively
computationally cheap. Thus the communi-
cation ratio is high. Moreover, this approach
requires a large number of iterations (up-
dates), within which the work done on each
pixel gets increasingly unbalanced. Thus we
discarded this approach. Another attempt of
improvement is to decide the number of itera-
tions in the block DFS approach dynamically,
i.e. counting the ratio of useful exchanges
across the boundary to decide whether we
should perform another iteration. However,
this approach causes unnecessary contention
since all the wraps are counting the number
of useful exchanges simultaneously. Thus we
also discarded this approach and chose to
perform a fixed number of iterations.

2.2 OpenMP Implementation
on CPU

2.2.1 Our Parallelization Techniques

Similar to the GPU version, for steps 1-5,
where the work is independent, we directly
map the pixels to threads. We use static
scheduling since the work done on each pixel
is fixed and predictable.

To divide the image into blocks, we adopt
the block assignment. Initially, we used the
interleaved assignment, i.e. assigning a row of
pixels to a thread. However, this would result
in frequent cache invalidation. For example,

4



in the gradient extraction step, each pixel
has to refer to the values of its neighbors.
For a pixel at the border of a block, while it
writes to itself, its neighbor across the block
accesses its value. The contention between
reading and writing can result in unnecessary
cache invalidation. Thus we turned to block
assignment to reduce the ratio of pixels near
the border of the blocks.

For step 6 (edge tracking), we again present
a simulation of the depth-first search using
the same block DFS approach as the GPU
version. What is different is how we map
threads to pixels. In OpenMP version, the
number of blocks we divide the image into
is 20 × the number of processors. We then
use dynamic scheduling to assign blocks to
threads, since the work done on each block is
unpredictable and constantly changing. After
dividing the image, we use the same tech-
niques as the GPU version to simulate DFS.
What is different is that we use MPI Send
and MPI Recv to exchange the values of the
pixels at the border with their neighbors
across the block.

2.3 Image Segmentation

After finishing our project goal, the two
parallel versions of the edge detector, we
explored its application by implementing
an image segment. The input is the edge
extraction graph and a point inside the
image. The output is an image with only the
segmented portion of a graph that contains
the designated point. We can then use this
as the mask to filter out this portion of the
image to reach the effect of object cutout. An
illustration of the object cutout effect based
on different designated points on the same
image is illustrated in Figure 5.

We implemented this part by radiating from
the designated point to find a point on its

Figure 4: Image Segmentation Procedure

boundary and following along that point
to find a closed boundary that encloses the
designated point. Whenever we fail in the
process, such as hitting the image border,
failing to find a closed boundary, or finding
a boundary that does not enclose the desig-
nated point, we start over the search. After
finding the correct boundary, we suppress all
other edges and output only the boundary.
An illustration of the imgae segmentation
algorithm is shown in Figure 4.

All parts of our program were started from

5



Figure 5: Image Segmentation Example

scratch, without any code base or data
processing platforms such as OpenCV.

3 Results

3.1 Experimental Setup

We performed extensive testing on both our
GPU and CPU parallel implementations. We
utilized the machines on the 5th floor of GHC.

For each of the parallel version, we experiment
with four different input configurations. We
chose an easy image, with clear and continu-
ous edges, as shown in Figure 6. We also chose
three relatively hard images (real photos with
not necessarily clear boundaries) with differ-
ent sizes: 2k (Figure 12), 4k (Figure 13) and
8k (Figure 14). The edge detection results of
these three images are shown in the appendix.

We measure our performance by measur-
ing the time elapsed for each part of the
algorithm. We excluded the time of image
reading and file writing, and only measured
the parts involving edge detection.

Figure 6: Easy Input Image

3.2 GPU Performance and
Analysis

For the GPU version, we varied the problem
size and measured the speedup relative to the
CPU version with 1 processor. The result is
shown in Table 1 attached in Appendix, and
a line graph is shown in Figure 7.

Figure 7: GPU Speedup Graph

As shown in Figure 7, the speedup of our
GPU implementation is constantly 7 to
8 times compared to the runtime of our

6



baseline sequential implementation on CPU.
The speedup is almost independent of the
problem size.

Although a 8 to 9 times speedup is satis-
factory, the speedup doesn’t fully reflect
the extra parallel computational resources
provided on a GPU. To determine the exact
reason, we broke the execution time of our
algorithm into a number of distinct compo-
nents, according to the steps described in
the Background section. The result is shown
in Table 3 attached in Appendix, and a line
graph is shown in Figure 8.

As for edge tracking, we believe one of the
limitations is the low SIMD utilization in our
CUDA implementation. We implemented
edge tracking with the DFS algorithm, and
we used a stack-like data structure to keep
track of the process of DFS, which highly
diverges due to the difference in the number
of iterations and conditionals.

The other components all experience very
high speedup, since the operations are less
memory intensive, and experience very low
SIMD divergence. According to our measure-
ments, each component experience roughly
50-100x speedup.

Figure 8: GPU Time Components Graph

According to Figure 8, the most expensive
parts in our GPU implementation are Gaus-
sian blur (37.5%) and edge tracking (43.7%).
In the Gaussian blur process, each unit
reads data from its neighboring pixels, and
calculates a weighted sum according to the
Sobel filter. Such operation produces a high
traffic for the memory bandwidth. Since the
task is memory bounded, the performance
of Gaussian Blur is bounded by memory
bandwidth, and therefore less dependent on
GPU’s extra computational power. The same
problem applies to gradient calculation, which
occupies 11% of the total time. Gradient
calculation requires accessing nearby memory
blocks, and is therefore tightly bounded by
memory bandwidth.

3.3 CPU Performance and
Analysis

For the CPU version, we varied both the
number of processors and the problem size
and measured the speedup relative to the
CPU version with 1 processor. The result is
shown in Table 2 attached in Appendix, and
a line graph is shown in Figure 9.

Figure 9: CPU Speedup Graph

According to Figure 11, we generally obtained
a 5x speedup with 8 cores and 8x speedup

7



with 16 cores, which is nearly linear with
respect to the number of processors. The
speedup also greatly varies with different
input size. When we experiment with larger
images, the CPUs implementation usually
experiences a higher speedup. We believe
this is due to better work balancing among
various workers. To verify our conjecture,
we performed measurement on the number
of pixels assigned to each processor in edge
linking step, shown in 10. The data shows
that Unlike our GPU implementation, each
computation unit in the CPU is responsible
for a large number of pixels, and therefore
work balancing becomes a bigger issue. As we
mentioned before, a large portion of our CPU
implementation is scheduled statically. Sta-
tistically, as the number of pixels increases,
pixels can be more evenly distributed among
workers and therefore fewer workers become
idle.

Figure 10: Number of pixels assigned to each
worker

We also noticed that, for smaller problem
sizes, the speedup decreases when we increase
from 8 scores to 16 cores. We believe this is
due to the performance overhead of dynamic
work distribution. When the workload is
small, the ratio of scheduling time will dras-
tically increase.

To identify more limitations to our CPU
implementation, we varied the number of
processors and measured the time breakdown
for each configuration. The result is shown

in Table 4 attached in Appendix, and a line
graph is shown in Figure 11.

We identified from the measurements that
among all components in the computation,
edge tracking and Gaussian Blur experience
the most obvious speedup among all compo-
nents, whereas gradient and non-maximum
suppression experience the lowest. We be-
lieve this is due to the work division of our
implementation. In both gradient calculation
and non-maximum suppression, our work
assignment will result in each worker reading
data from data segment responsible by other
workers. Therefore this will cause extra in-
validation when workers write across different
segments, and extra interconnect traffic when
writing the data responsible by other workers.

Figure 11: CPU Time Components Graph

4 Conclusion
We implemented parallel edge detection for
both GPU with CUDA and CPU with
OpenMP. The implementations managed to
perform edge detection and produce image
segmentation using the result of edge detec-
tion. We also performed very extensive mea-
surements. By our measurement, we found
out that our implementation has a better per-
formance on NVIDIA GTX 1080 than 8-core
Intel Xeon E5, which leads to the conclusion

8



that GPU is a better choice for this parallel
task. We also identified the GPU performance
is mostly bounded by memory bandwidth,
which means that increasing memory band-
width can potentially improve the speedup of
our parallel implementation.

5 References

[1] Green, Bill. ”Canny edge detection
tutorial.” Retrieved: March6 (2002): 2005.
[2] Canny, John. ”A computational approach
to edge detection.” IEEE Transactions on
pattern analysis and machine intelligence 6
(1986): 679-698.
[3] Harish, Pawan, and P. J. Narayanan.
”Accelerating large graph algorithms on the
GPU using CUDA.” International conference
on high-performance computing. Springer,
Berlin, Heidelberg, 2007.
[4] Morar, Anca, Florica Moldoveanu, and
Eduard Grller. ”Image segmentation based
on active contours without edges.” 2012 IEEE
8th International Conference on Intelligent
Computer Communication and Processing.
IEEE, 2012.
[5] Pal, Nikhil R., and Sankar K. Pal. ”A
review on image segmentation techniques.”
Pattern recognition 26.9 (1993): 1277-1294.
[6] Felzenszwalb, Pedro F., and Daniel P.
Huttenlocher. ”Efficient graph-based image
segmentation.” International journal of com-
puter vision 59.2 (2004): 167-181.
[7] https://github.com/DUKaige/kaigel rhe1
418project.

6 Work division

- Sequential edge detector
Dustin: non-maximum suppression, double
thresholding
Karen: gradients extraction, edge tracking

- Parallel edge detector on GPU
Dustin: edge tracking

Karen: gradients extraction, non-maximum
suppression, double thresholding

- Parallel edge detector on CPU
Dustin: edge tracking
Karen: gradients extraction, non-maximum
suppression, double thresholding

- Image segmentor
Dustin: Point radiation and closed boundary
search
Karen: Deciding whether a point is within a
closed boundary

We think that the total credit for the project
should be distributed 50%, 50% amongst our
two.

9



Table 1: GPU Speedup Data

Table 2: CPU Speedup Data

Table 3: GPU Components Data

Table 4: CPU Components Data

10



Figure 12: 2K 1600x1000 Input Image

11



Figure 13: 4K 3840x2160 Input Image

12



Figure 14: 8K 7500x4300 Input Image

13


